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Abstract
A model of nonradiative transitions in spin-crossover molecules is developed.
The model takes into account linear and quadratic terms of electron–vibrational
interaction. The frequency effect is shown to arise from the quadratic term of
this interaction. With account of the frequency effect analytical expressions are
derived for the multiphonon decay rate of the high-spin state of a spin-crossover
molecule. In the framework of the suggested model for different temperatures
the probability of the nonradiative decay of the high-spin Fe(II) state in the
diluted [Zn1−xFex(ptz)6](BF4)2, x = 0.1 system is calculated. The theoretical
results are in agreement with the experimental ones.

1. Introduction

The problem of nonradiative transitions is one of the fascinating problems of molecular and
solid state physics. The scientific interest of this problem is promoted by the role of nonradiative
transitions in different observed phenomena. Luminescence quenching, recombination of
electrons with local centres and holes, inelastic scattering of the current carriers by local centres
and exciton disintegration should be referred to nonradiative transitions. It is well known that
the probabilities of nonradiative transitions are the key parameters of laser generation. These
transitions also play a crucial role in different biophysical transformations. With the discovery
of the LIESST effect [1, 2] in spin-crossover systems and the elucidation of the mechanism
of light-induced population of metastable high-spin (hs) states, new possibilities to study the
high-spin–low-spin (ls) relaxation in the solid were opened.

Laser and spin-crossover systems gave rise to a new trend in the theory of nonradiative
relaxation [3, 4]. In these systems the transitions may occur between electronic states with
different spin multiplicity, for example transition 4T2g(t22e) → 2T1g(t32) in ruby and tran-
sition 5T2(t42e2) → 1A1g(t62) in iron spin-crossover systems. That is why in [3] and [4] the
spin–orbital interaction was taken as the perturbation causing the nonradiative transition. Nev-
ertheless, in [3] and [4], as in most papers devoted to the problem of nonradiative transitions
in systems with strong electron–vibrational interaction, only the linear term of this interaction
was included in the Hamiltonian. Unfortunately, within the limits of an article it is impossible
to quote all papers based on this approximation. In the theory of nonradiative relaxation the
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common action of linear and quadratic electron–vibrational interactions accompanied by the
frequency effect has not been considered yet. Meanwhile, in spin-crossover systems as shown
below the quadratic electron–vibrational interaction is responsible for the appreciable fre-
quency change under the hs → ls transition and significantly affects the rates of the transitions.

Below we suggest a new model of nonradiative transitions in isolated spin-crossover
systems. The model takes into account the interaction of a molecule with the crystal field,
the linear and quadratic terms of electron–vibrational interaction as well as the frequency
effect induced by the quadratic interaction. Within the framework of the suggested model a
special emphasis will be put on the quantitative interpretation of experimental data on diluted
spin-crossover [Zn1−xFex(ptz)6](BF4)2 (x = 0.1) compounds [5].

The paper is organized as follows. In section 2 the quantum mechanical theory of
non-radiative transitions in spin-crossover molecules is developed. The theory takes into
account the effects of linear and quadratic terms of electron–vibrational interaction on the
rates of non-radiative transitions. In section 3 the calculation of the matrix elements of the
perturbation operator is carried out. The comparison of theoretical and experimental results
on [Zn1−xFex(ptz)6] (BF4)2 (x = 0.1) systems is given in section 4.

2. Theory

We start with the model of nonradiative transitions in a single-spin-crossover molecule. The
Hamiltonian of an isolated molecule can be presented as:

H = He +HL +Hev (1)

where the first term is the electronic Hamiltonian determining the wavefunctions and the
eigenvalues of a molecule in the fixed nuclear configuration. The Hamiltonian He involves
the kinetic and potential energies of all d electrons, their interelectronic repulsion as well as
their interaction with the crystal surrounding. HL represents the Hamiltonian of free lattice
vibrations and Hev is the vibronic interaction Hamiltonian.

The spin-crossover transformation is usually characterized by a sizeable elongation in the
metal to ligand bond length [6]. The change of the equilibrium distances evidences a strong
interaction of the transition metal ion with the displacements of the nearest surroundings.
However, in most cases in neat solid state systems the spin-crossover transition is not
accompanied by a structural phase transition. So a conclusion can be made [7, 8] that the
contribution of non-symmetric Jahn–Teller modes to the vibronic Hamiltonian is small. At the
same time, infrared and Raman spectroscopy data indicate different vibrational frequencies
in the low-spin (ls) and high-spin (hs) states of a crossover complex (see, for example, [9]).
The so-called frequency effect [10] is usually referred to the quadratic terms of electron–
vibrational interaction. Therefore, we further confine ourselves to a simplified vibronic model
with accounting only of the local full-symmetric (breathing) A1 mode. In the operator of
electron–vibrational interaction we include both the linear and quadratic terms:

Hev = v(�r)q + w(�r)q2 (2)

where �r denotes the set of electronic variables, q is the fully symmetric vibrational coordinate.
For the initial (hs) and final (ls) states of the nonradiative transition we introduce the

irreducible representations �1 and �2 of the metal centre point group with γ1 and γ2 being
their row indices. As long as we neglect the effect of non-symmetric vibrations further we
employ the standard method of adiabatic approximation for both the hs and ls states. Within
the framework of this approximation in the basis of Condon electronic wavefunctions [10]
|S1M1�1γ1〉 and |S2M2�2γ2〉 (where S1 and S2 are the spins of the hs and ls states, respectively,
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andM1,M2 are their projections) the matrix H of the molecule has the form:

H =
(
�Î1 0

0 0

)
+ q

(
v1Î1 0

0 v2Î2

)
+ q2

(
w1Î1 0

0 w2Î2

)
+
h̄ω

2

(
q2 − ∂2

∂q2

)
(3)

where v1, w1 and v2, w2 are the vibronic coupling constants for the hs- and ls-states,
respectively. � is the electronic gap between these states, ω is the vibrational frequency,
Î1 and Î2 are the unit matrices acting in the hs and ls spaces. The HamiltonianH is valid when
the non-adiabaticity is small and hence, our analysis is valid when the energy barrier between
the spin states is large relative to h̄ω. After employing the adiabatic approximation the operators
v(�r) and w(�r) are redetermined due to the account of the second order corrections on linear
electron–vibrational interaction to the energies of the ‘self-consistent’ electronic states [10].
We retain the notations for the values vi and wi . Then we introduce the transformation

Qi = α−1
i q +

αivi

h̄ωi

α
−1/4
i = 1 +

2wi
ω

(4)

h̄ωi

2
=
√
h̄ω

2

(
h̄ω

2
+ wi

)
. (5)

The vibrational coordinateQi becomes dependent on the electronic state. After substitutions
(4) in (3) we obtain that each state of the system is described by a Hamiltonian of the oscillator
form:

Hi = Ji +
h̄ωi

2

[
(Qi)

2 − ∂2

∂(Qi)2

]
(6)

where

Ji = �i − 1

2

(viαi)
2

h̄ωi
(7)

�1 = � �2 = 0.

The wavefunctions of the system have the form:

�iγi ,n = |SiMi�iγi〉�n(Qi). (8)

The corresponding eigenvalues of the Hamiltonians Hi turn out to be equal to:

Eiγi ,n = Ji + h̄ωi(n + 1
2 ). (9)

The quadratic electron–vibrational interaction redetermines the frequency of the fully
symmetric vibration. The frequency and, correspondingly, the distances between the
vibrational levels become dependent on the electronic state of the molecule. Now we derive the
formula for the rate of a nonradiative transition between two states with different spin values.
According to [11] the excitation transfer between two discrete electron–vibrational levelsE1γ1,n

and E2γ2,n′ is possible due to the relaxation of the final state and occurs with the rate:

W1γ1M1,n→2γ2M2,n′ = 2

h̄2

γ |〈S1M1�1γ1|U |S2M2�2γ2〉|2(Sn′n)
2

(E2γ2,n′ − E1γ1,n)
2 + γ 2

(10)

where γ−1 is the relaxation lifetime of the final state,

Sn′n =
∫ ∞

−∞
dq �n′

(
α2q +

v2α2

h̄ω2

)
�n

(
α1q1 +

v1α1

h̄ω1

)
(11)

is the Condon integral, U is the perturbation operator acting in the electronic subsystem.
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For vibrational frequencies which belong, as in the examined case, to the discrete spectrum
the decay of the final 2γ2, n

′ state may occur on account, for instance, of anharmonic processes
etc. The electron–vibrational state 2γ2, n

′ actually plays the role of a virtual state. The real final
state is reached after relaxation. For crystal modes (continuous spectrum) the Lorentzian should
be substituted by the δ-function, and the integration over the final states should be carried out.

The rate of the nonradiative decay averaged over the populations of the initial levels and
summed up over the final states has the form:

W(1 → 2) = 1

(2S1 + 1)g(�1)

∑
M1,M2,γ1,γ2,n,n′

W1γ1M1,n→2γ2M2,n′ρ(n) (12)

where

ρ(n) = 2 sinh

(
β1

2

)
exp(−β1(n + 1/2))

is the equilibrium statistical weight of the vibrational n-state, β1 = h̄ω1/kT , g(�1) is the
electronic degeneracy of the initial �1-state. Equation (12) also contains the summation over
the equivalent minima of the adiabatic potential sheets in the initial and final electronic states.

For the calculation of the transition rateW(1 → 2) we employ the identity

F(ω2(n
′ + 1/2)− ω1(n + 1/2)) =

∫ ∞

−∞
F(ρ)δ(ρ + ω1(n + 1/2)− ω2(n

′ + 1/2)) dρ

= 1

π

∫ ∞

−∞
F(ρ) dρ Re

∫ ∞

0
dt exp[−iρt − it (ω1(n + 1/2)− ω2(n

′ + 1/2))]. (13)

With the aid of equation (13) after simple transformations equation (12) is rewritten in the
form:

W(1 → 2) = 2γ

(2S1 + 1)g(�1)h̄
2 ζ

2Re
∫ ∞

0
exp(−γ t) dt

〈
exp

(
iH2t

h̄

)
exp

(−iH1t

h̄

)〉
s

(14)

where

〈A〉s = (Z1v)
−1 Trv[exp(−λH1)A]

(
λ = 1

kT

)
(15)

is the statistical average upon the phonon states corresponding to the initial hs electronic state,
Z1v is the statistical sum of the phonon subsystem of the hs electronic state,

ζ 2 =
∑

M1,M2,γ1,γ2

|〈S1M1�1γ1|U |S2M2�2γ2〉|2.

The phonon statistical average in (14) is carried out by the method of cumulant expansion
[10, 12]. The thus-obtained expression for the rateW(1 → 2) appears as follows:

W(1 → 2) = 2

h̄2(2S1 + 1)g(�1)
ζ 2Re

∫ ∞

0
exp(−γ t) exp(g(t)) (16)

g(t) = −it�̄− 1

2

�2
hl

(h̄ω1)2
coth

(
β1

2

)
+

1

2

�2
hl

(h̄ω1)2

cos(ω1t − iβ1/2)

sinh(β1/2)
(17)

where

ωhl = J1 − J2

h̄
�̄ = ωhl +

Chl

2h̄
coth

(
β1

2

)

Chl = (h̄ω1)
2 − (h̄ω2)

2

2h̄ω1

�hl = α1

(
v2
ω1

ω2
− v1

)
. (18)
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In equation (17) the linear terms of electron–vibrational interaction are accounted for
exactly in all orders of the perturbation theory, while the quadratic terms only in the first order.
This approximation is valid as long as Chl � �hl . We employ further the generating function
of the modified Bessel functions in the form:

exp(z cosϕ) =
∞∑

n=−∞
exp(inϕ)In(z). (19)

Substituting equation (19) in equation (17), and then carrying out the integration over t in (16)
we obtain:

W(1 → 2) = 2

h̄2(2S1 + 1)g(�1)
ζ 2
∑
n

In

(
�2
hl

2(h̄ω1)2 sinh(β1/2)

)
exp

(
nβ1

2

)

× exp

(
−�

2
hl coth(β1/2)

2(h̄ω1)2

)
γ

γ 2 + (�̄− nω1)2
(20)

where the summation over n includes all channels of multiphonon decay of the hs state
conforming with the energy conservation law. Nevertheless, for temperatures kT < h̄ω1 the
contribution of terms with n < 0 (virtual absorption of vibrational quanta) can be neglected.
These transitions should be taken into account beginning with the temperatures for which
n̄(ω1) + 1 ∼ n̄(ω1). For kT < h̄ω1 the rate of decay (20) can be presented as a sum of
probabilities of partial processes each of which corresponds to a hs → ls transition with the
emission of a definite number of vibrational quanta. The maximum value of the number n is
denoted by n̄ and determined by the inequality |�̄− n̄ω1| < ω1. So n̄ is approximately equal
to [�̄/ω1] (where the symbol [] indicates the integer part of the quantity �̄/ω1). The value
[�̄/ω1] depends on the vibrational frequency of the hs state and not on the mean value of the
frequencies ω1 and ω2. Formula (20) for the rateW(1 → 2) differs from the usually accepted
one at several points. The change in the frequency leads to the redetermination of the so-called
heat creation constant (Huang–Rhys factor)

S = �2
hl

2(h̄ω1)2
. (21)

In terms of the equilibrium values Q(e)i = −viαi/h̄ωi of the vibrational coordinates
Qi(i = 1, 2), S is written as:

S = 1

2

(
Qe1 − α2

α1

ω2

ω1
Qe2

)
(22)

and depends not only on the vibronic parameters v1 and v2 but also on the ratio of the frequencies
ω1 and ω2. For equal frequencies ω1 = ω2 = ω equation (22) passes to its usually accepted
form:

So = 1
2Q

2
hl Qehl = Qe1 −Qe2. (23)

In the case of ω1 < ω2, the so called frequency effect also gives rise to the temperature
decrease of the energy gap between the minima of the adiabatic potential sheets of the hs and
ls states (term (Chl/2h̄) coth(β1/2) in �̄, equation (18)). It is worth noting that taking account
of the final state width each term in equation (20) describes a Lorentz line corresponding to
a transition accompanied by the generation of n vibrational quanta. For low temperatures
S/sinh(β1/2)� 1, equation (20) takes on the form

W(1 → 2) = 2 exp(−S)
h̄2(2S1 + 1)g(�1)

ζ 2
∑
n

Sn

n!

γ

γ 2 + (�̄− nω1)2
. (24)
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If all processes with emission and absorption of vibrational quanta are accounted for, and n
is considered as a continuous variable (−∞ � n � ∞, see equation (19)) for γ → 0 the
Lorentzian can be replaced by the δ-function, and the integration over n gives:

W(1 → 2) = 2πζ 2

h̄2(2S1 + 1)g(�1)ω1
exp

(
n̄β1

2

)
In̄

(
S

sinh(β1/2)

)
exp

(
−S coth

(
β1

2

))
(25)

where also n̄ = [�̄/ω1].
Equation (25) looks like that obtained in [4]. Nevertheless it accounts for two vibrational

modes, and therefore the heat creation factor is given by equation (21), and the temperature
dependence of the transition rate is determined by the frequency of the initial hs state. It should
also be mentioned that while deriving the formula for the rate of the nonradiative hs → ls
transition in [4] the average over the initial states was not carried out correctly, and therefore
the factor (2S1 + 1)g(�1) was missing. For example, for the hs → ls transition (5T2 → 1A1)
in Fe(II) this is a factor of 15. At high temperatures we expand the functions g(t) over t and
retain terms from the zeroth to the second order inclusive

g(t) = −it�̄ +
it

2

�2
hl

h̄2ω1
− t

2

4

�2
hl

h̄2 coth

(
β1

2

)
. (26)

For

h̄γ < |�hl|
√

coth

(
β1

2

)

and ∣∣∣∣h̄ωhl +
Chl

2
coth

(
β1

2

)
− �2

hl

2h̄ω1

∣∣∣∣ < |�hl|
√

coth

(
β1

2

)

after integration over t in equation (16) we obtain

W(1 → 2) = 2ζ 2

h̄2(2S1 + 1)g(�1)

√
πh̄2

(�hl)2 coth(β1/2)
exp

(
− h̄(�̄− (�hl)2/2h̄2ω1)

2

(�hl)2 coth(β1/2)

)
. (27)

For extremely high temperatures kT � h̄ω1 the nonradiative transition has an activation
character

W(1 → 2) ∼ exp

(
− h̄

2(�̄− (�hl)2/2h̄2ω1)
2h̄ω1

2(�hl)2kT

)
. (28)

Below, it will be shown that for spin-crossover systems the criteria of application of equations
(27), (28) are not fulfilled for any reasonable temperature.

3. Calculation of the matrix elements of the perturbation operator

Now we shall consider the factor ζ 2 that enters the expression for the transition rate. As long
as the initial and final states of the nonradiative transition possess different spin multiplicities
as in [3, 4] the operator of spin–orbital interaction HSO is assumed to promote the transition.
Further we shall examine the hs–ls transition in the Fe(II) ion and restrict ourselves to a cubic
octahedral environment of this ion. Under this assumption the hs–ls transition is identified
with that between the states 5T2(t42 e2) and 1A1(t62). However, the spin–orbital interaction has
vanishing matrix elements between these two terms and couples only each of them to the
state 3T1 arising from the configuration t2 5e. In such a way only in the second order of the
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perturbation theory a nonvanishing matrix element of the operator of spin–orbital interaction
appears:

〈5T2 γ1M1|U |1A1γ2M2〉
= −

(
1

�E1
+

1

�E2

)∑
γ3M3

〈5T2 γ1M1|HSO |3Tγ3M3〉〈3T1γ3M3|HSO |1A1γ2M2〉

(29)

where�E1 = E3T1 −E5T2
is the energy gap between the states 5T2 and 3T1 at the equilibrium

configuration of the state 5T2 and �E2 = E3T1 − E1A1 is the energy gap between the states
1A1 and 3T1 at the equilibrium configuration of the state 1A1. For the purpose of obtaining
the matrix elements of the operator HSO we represent this operator in the form [13], which is
valid only for a cubic point group:

HSO = 1√
2

[−V+1α(1T1) + iV+1β(1T1)] +
1√
2

[V−1α(1T1) + iV−1β(1T1)] + VOγ (1T1) (30)

where

V±1α(1T1) =
∑
i

Si±1tiα

V±1β(1T1) =
∑
i

Si±1tiβ

VOγ (1T1) =
∑
i

SiOtiγ (31)

Si±1 = ∓ 1√
2
(Six ± iSiy)

SiO = Siz
and

tiα = ξ(�ri)9ix tiβ = ξ(�ri)9iy tiγ = ξ(�ri)9iz. (32)

In equation (31) the summation over all d electrons of the Fe(II) ion is carried out. The operator
HSO is expressed as the linear combination of double tensor operators Vqγ̄ (1T1) where q = 0,
±1, and γ̄ = α, β, γ . For the double tensor operators Vqγ̄ (1T1) the Wigner–Eckart theorem
leads to the formula:

〈�γSM|Vqγ̄ (1T1)|�′γ ′S ′M ′〉
= [(2S + 1)(�)]−1/2〈�S‖V (1T1)‖�′S ′〉〈SM|S ′M ′1q〉〈�γ |�′γ ′T1γ̄ 〉 (33)

where 〈�S‖V (1T1)‖�′S ′〉 is the reduced matrix element, 〈SM|S ′M ′1q〉 and 〈�γ |�′γ ′T1γ̄ 〉 are
the Wigner and Clebsch–Gordon coefficients, respectively. Then with the aid of equations (29),
(30) and (33) for ζ 2 (equation (14)) we obtain:

ζ 2 = 2

135

(
1

�E1
+

1

�E2

)2

|〈5T2‖V (1T1)‖3T1〉|2|〈3T1‖V (1T1)‖1A1〉|2. (34)

The multielectronic reduced matrix elements 〈5T2‖V (1T1)‖3T1〉 and 〈3T1‖V (1T1)‖1A1〉 can
be expressed in terms of those for the one-electron system, 〈t2‖v(1T1)‖e〉:

〈5T2‖V (1T1)‖3T1〉 = −
√

5
2 〈t2‖v(1T1)‖e〉 = −3

√
5iξ

〈3T1‖V (1T1)‖1A1〉 = 〈t2‖v(1T1)‖3T1〉 = 3
√

2iξ (35)

where ξ is the radial integral

ξ =
∫ ∞

0
R2

3d(r)ξ(r)r
2 dr (36)
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that is called the constant of spin–orbital coupling. While writing equations (35) and (36) we
neglect the difference between the radial functions of the e and t2 orbitals. The final result for
ζ 2 appears as follows:

ζ 2 = 12ξ 4

(
1

�E1
+

1

�E2

)2

. (37)

Equation (37) differs from that obtained in [4] by a factor of 1.5. The discrepancy takes place
because in [4] the matrix elements in equation (29) were replaced by their reduced values taken
from [14] and the summation over the values γi was not carried out. Further we estimate the
value ζ with the aid of experimental data on the LIESST effect in [Fe(ptz)6](BF4)2 [6]. As the
gap�E2 the maximum of the 1A1 → 3T1 band at 10 280 cm−1 (980 nm) is taken. The energies
of the levels 3T2 and 5E are supposed to be approximately equal to 14 300 cm−1. As long as
the energy of the transition 5T2 → 5E is about 12 200 cm−1 (820 nm) the electronic gap �
between the states 5T2 and 1A1 is 2100 cm−1. Finally, for�E1 we obtain the value 8180 cm−1.
For�E1 = 8180 cm−1,�E2 = 10 280 cm−1 and ξ = 404 cm−1 [14], ζ 2 ≈ 1242 cm−2. If for
�E1 the value 6828 cm−1, calculated in [15] for [Fe(ptz)6](BF4)2, is taken, we obtain a bigger
parameter ζ 2 ≈ 1372 cm−2. The gaps �E1 and �E2 in [4] were taken from the energy-level
diagram of Tanabe and Sugano [16] for the d6 ion at the crossing point�E = 7.6B under the
assumption that C/B = 4.81. For |ζ | a value of 170 cm−1 was obtained. Nevertheless the
values of B and C are different for each complex, and the energy gap between the states 5T2

and 1A1 is non-vanishing. From this point of view the estimation of |ζ | based on experimental
data looks more precise.

4. Comparison with experiment

The numerical estimation of the nonradiative transition rate has been performed for the hs–ls
transition in the mixed crystal system [Zn1−xFex(ptz)6](BF4)2, x = 0.1 [5]. In this diluted
system the spin transition is gradual [5], as expected in the absence of cooperative effects. The
hs–ls relaxation in [Zn1−xFex(ptz)6](BF4)2, x = 0.1 is a single-exponential function. In such
a way, at different temperatures the experimental values of the probability of decay of the hs
state correspond to those for a single spin-crossover molecule. As seen above, the probability
of decay in an isolated molecule is governed by nine parameters. These are the vibronic
parameters v1, v2, w1, w2, the frequencies ω1, ω2, the relaxation time γ−1 of the final state,
the gap ωhl and the constant ζ . In order to calculate the temperature dependence of the decay
rate first we will try to evaluate and discuss the values of the above mentioned parameters. For
an octahedral complex formed by Fe(II) and six ligands the matrix elements v1 and v2 of the
linear electron–vibrational interaction can be expressed as the mean values of the derivatives
of the crystal field energies in the ls and hs states, respectively

v1 = 〈hs|
(
∂W(r, R)

∂R

)
R=Rhs

|hs〉
√
h̄ω1

6f1

v2 = 〈ls|
(
∂W(r, R)

∂R

)
R=Rls

|ls〉
√
h̄ω2

6f2
. (38)

where Rhs , Rls are the metal–ligand distances in these states, W(r,R) is the potential energy
of the interaction of the electrons of the iron ion with the atoms of the surroundings and f1 and
f2 are the force constants of the full symmetric mode in the hs and ls states, respectively. In
the point-charge crystal field model,W(r,R) is the crystal field acting on the electronic shell
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of the iron ion. If the complex FeX6 (where X is a neutral ligand) is assumed to be cubic

v1 = 4

√
6h̄ω1

f1

Dqhs

Rhs

v2 = 24

√
6h̄ω2

f2

Dqls

Rls
(39)

where Dqhs and Dqls are the parameters of the cubic crystal field [13] in the hs and ls states,
respectively. While estimating the parameters v1 and v2 for Dqhs , Dqls , Rls , Rhs the values
for [Fe(ptz)6](BF4)2 listed in [18] are taken:

Dqhs = 2055 cm−1 Dqls = 1176 cm−1

Rls = 2 Å Rhs = 2.2 Å. (40)

For the fully symmetric breathing mode in [Fe(ptz)6](BF4)2 the frequencies ω1 = 161 cm−1,
ω2 = 200 cm−1, the force constants f1 = 158 N m−1, f2 = 227 N m−1 have been determined
in [17, 18] permitting us to perform the calculation of the parameter S (equation (21)). With
these values for ω � w2 we obtain

S = 48

f1h̄ω1

(
6
Dqls

Rls

√
f1ω1

f2ω2
− Dq

hs

Rhs

)2

= 62.388. (41)

The inequalityω � w2 seems to be reasonable becauseω2 > ω1 andω2−ω1 � ω1,ω2. It
is seen that equation (41) allow us to express the parameter S through the empirical parameters
of the crystal field and of the phonon spectrum and to obtain the numerical evaluation of the
discussed effects. At low temperatures kT < h̄ω1 the anharmonic broadening γ of the final
state of the nonradiative transition is a value of the order of 1 cm−1 [19]. For |ζ | we take the
value 137 cm−1 estimated in section 2. Using the frequencies ω1 and ω2 [17, 18] the value Chl
(equation (18)) is easily calculated: it is equal to −43.7 cm-1 and small in comparison with
the value�hl ≈ 1789 cm−1. In such a way the vibronic parameters w1, w2 characterizing the
quadratic electron–vibrational interaction do not enter in an evident form the expression for
the transition rate (see equations (20), (25)). They are contained in the theory by means of the
frequencies ω1, ω2. From experimental data it is impossible to obtain direct information about
the gap ωhl between the minima of the adiabatic potential sheets corresponding to the ls and
hs states insofar as the optical hs ⇔ ls transitions are forbidden. Therefore the gap ωhl will
be considered as a fitting parameter.

In figure 1 the temperature dependence of the transition probabilityW(1 → 2) calculated
with the aid of equations (20) and (25) is depicted; here also the experimental data of Jeftic
and Hauser [5] are shown. Curves 1 and 3 obtained by means of equation (25) correspond to
n̄ = 4 and 3, respectively. It is seen that the theoretical results presented in curve 3 differ from
the experimental ones by an order of magnitude. In the case of n̄ = 4 up to T = 50.2 K the
theoretical and experimental values coincide. Beginning from the temperature T = 52.6 K
the theoretical curve lies higher.

However, in this range of temperatures the theoretical and experimental values are of the
same order of magnitude. For equation (25) the choice n̄ = 4 provides a better agreement with
the experiment as compared with n̄ = 3 insofar as for S � 1 the probability of the nonradiative
transition turns out to be an increasing function of the number of vibrational quanta. For
instance, at low temperatures the ratio of the probabilities for n̄ = 4 and ¯n = 3, calculated
with the aid of equation (25), is equal to S/4 � 1. As long as n̄ = [�̄/ω1], a conclusion can
be made that, for n̄ = 4, the gap �̄ falls within the limits 644 cm−1 � �̄ < 805 cm−1, and
hence, the value of the gap ωhl is determined by the inequality 666 cm−1 � ω < 827 cm−1.
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Figure 1. The probability rate W(1 → 2) as a function of temperature with S = 62.388, ω1 =
161 cm−1, ω2 = 180 cm−1, |ζ | = 137 cm−1. (1) (triangle down) calculated using equation (25),
n̄ = 4; (2) (solid curve) calculated using equation (20), n from 0 to 3, ωhl = 502.5 cm−1;
(3) (triangle up) calculated using equation (25), n̄ = 3; (4) (crosses) experimental data [5].

Curve 2 was calculated with the aid of equation (20) for n from 0 to 3. It is obvious that
starting with T = 45.5 K these results are in satisfactory agreement with the experimental
ones. For the gap between the minima of adiabatic potential sheets of the hs and ls states,
a value of 502.5 cm−1 is obtained. This value seems to be more reasonable as compared
with the parameter � = 170 cm−1 [5] characterizing the strength of the elastic interactions
and determining the temperature T1/2

∼= 150 K of the spin-crossover transition in the neat
[Fe(ptz)6](BF4)2 system.

As a matter of fact, the smaller the gap the easier the condition of spin crossover for
� = 170 cm−1 is fulfilled. It is also worth noting that the numerical calculations (equation (20),
curve 2) show that the term with n = 3 gives the dominant contribution to the transition rate
W(1 → 2). Therefore, at low temperatures for the above listed values of the parameters, the
ratio of the probabilitiesW(1 → 2) calculated with the aid of equations (20) (n = 3) and (25)
(n̄ = 4)

η = 4γω1

(γ 2 + (�̄− 3ω1)2)πS

is less than 1, and for n̄ = 4 equation (25) gives higher values ofW(1 → 2), that are in good
agreement with experimental ones.

Neglecting the frequency effect the heat creation constant So equation (23) can be
expressed as [6]

So = 3f�R2
hl

h̄ωo
(42)

where f = (f1 +f2)/2 and ωo(ω1 +ω2)/2 are the mean force constant and the mean frequency
respectively, �Rhl is the change in the metal–ligand bond length. For f = 192.5 N m−1,
ωo = 180.5 cm−1, �Rhl = 0.2 Å, So = 64.44. The parameter So is a little bigger than that
calculated with different force constantsfi and frequenciesωi (see equation (41)). Nevertheless
due to the factor exp(−S coth(β/2)) in the expressions (20) and (25) for the probability
rate W(1 → 2) the obtained heat creation constant So will cause a higher order transition
relative to the number of phonons and, hence, a higher gap ωhl will fit the experimental values.
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The consideration above carried out shows that equation (20) accounting for the relaxation of
the final transition state gives better agreement with experiment and provides the possibility to
estimate more precisely the energy gap ωhl . Nevertheless, formula (25) gives the probabilities
the values of the same order of magnitude and can be also useful.

Finally, we proceed to the discussion of the limits of validity of the semiclassical activation
formula (28). For the above mentioned values of the parameters fi , ωi and S = 62.388,
ωhl = 502.5 cm−1 we obtain that equation (28) is applicable for temperatures T > 3280 K.
The large activation energy

Eact = h̄
2(�̄− (�hl)2/2h̄2ω1)

2)h̄ω1

2(�hl)2
∼= 2280 cm−1

does not allow us to apply the semiclassical approximation in the range of reasonable
temperatures. In so doing the criteria of the semiclassical approximation do not hold for
the considered hs–ls transition at any accessible physical temperatures.

5. Concluding remarks

Previous work on the influence of the interaction of a spin-crossover molecule with molecular
vibrations on the rates of nonradiative transitions was centred on the simplest possible model
of electron–vibrational interaction, i.e. on a linear interaction. Nevertheless for spin-crossover
systems this simple model is not completely adequate because the hs ⇔ ls transition is always
accompanied by the change of the vibrational frequency (frequency effect). Here we have
presented a model of nonradiative transitions in isolated spin-crossover systems that takes into
account linear and quadratic electron–vibrational interaction. This interaction leads not only
to the dependence of the frequency of the vibrational mode on the electronic state, but also to
the change of the form of the adiabatic potentials corresponding to the hs and ls states, to the
change of the vertical and horizontal shifts of these sheets. Nevertheless, the main effect of
the quadratic interaction is the redetermination of the Huang–Rhys factor, which is the most
important parameter characterizing the transition. So long as all enumerated effects already
arise in the first order on the constant of quadratic electron–vibrational interaction, and the last
is shown to be not strong (Chl � �hl), the terms of vibronic interaction of a higher order will
give only small corrections. Therefore they have not been taken into consideration.

Besides the account of quadratic interaction in this paper a new approach is developed
to the problem of intracentre nonradiative transitions in the case of interaction of electronic
states with molecular modes. The transition is considered as a nonradiative energy transfer
between the initial and final electron–vibrational states, and the lifetime of the final state
enters the expression for the transition rate. In such a way the relaxation of the final state
providing the irreversibility of the transition is introduced in the theory. For the transition rates
simple analytical formulae have been obtained. It is shown that all parameters inherent to the
transition can be calculated microscopically or with the aid of experimental data. It should
be outlined that the first observable effect due to the quadratic term in the Hamiltonian of
electron–vibrational interaction is different vibrational frequencies in the ls and hs states. This
is the effect observed by Raman [9] and infrared spectroscopy and accounted for in our model.
The second observable effect of quadratic interaction is the sufficiently steep temperature
dependence of the decay rate determined by the vibrational frequency of the hs state, which is
smaller than that in the ls state.

In addition to the quantum theory of the non-radiative transitions, taking into account linear
and quadratic electron–vibrational interaction, the semiclassical approximation is considered.
The limitation and range of validity of this method are carefully explored. In particular, it
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is found that for spin-crossover systems this approximation does not work in the range of
reasonable temperatures.

The suggested theory was applied to the calculation of the temperature dependence of the
lifetime of the hs level of the Fe(II) ion in the diluted [Zn1−xFex(ptz)6](BF4)2, x = 0.1 system.
The calculated values are in satisfactory agreement with the experimental ones.

Finally, it should be mentioned that the model is restricted to a spin-crossover molecule,
the symmetry of which is sufficiently high and admits only one fully symmetric vibration. In
real systems the symmetry is lower and leads to several vibrations of such a type. However,
from the point of view of theory the generalization of the suggested model on this case will not
face principal difficulties. The only point is the knowledge of detailed information about the
frequencies of the above mentioned vibrations and their symmetry as well as about the Stark
splitting of the hs state.
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[1] Decurtins S, Gütlich P, Köhler C P, Spiering H and Hauser A 1984 Chem. Phys. Lett. 105 1
[2] Decurtins S, Gütlich P, Hasselbach K M, Spiering H and Hauser A 1985 Inorg. Chem. 24 2174
[3] Perlin Yu E, Tsukerblat B S and Perepelitsa E I 1972 JETP 62 2265
[4] Buhks E, Navon G, Bixon M and Jortner J 1980 J. Am. Chem. Soc. 102 2918
[5] Jeftic J and Hauser A 1997 J. Phys. Chem. B 101 10 262
[6] Gütlich P, Hauser A and Spiering H 1994 Angew. Chem. 33 2024
[7] Gehring G A and Gehring K A 1975 Rep. Prog. Phys. 39 1
[8] Kaplan M and Vekhter B 1995 Cooperative Phenomena in Jahn–Teller Crystals (New York: Plenum)
[9] Bousseksou A, McGarvey J J, Varret F, Real J A, Tuchagues J P, Dennis A C and Boillot M L 2000 Chem. Phys.

Lett. 318 409
[10] Perlin Yu E 1963 Usp. Fiz. Nauk 80 553
[11] Gamurar V Ya, Perlin Yu E and Tsukerblat B S 1969 Sov. Solid State Phys. 11 1193
[12] Kubo R 1962 J. Phys. Soc. Japan 17 1100
[13] Sugano S, Tanabe Y and Kamimura H 1970 Multiplets of Transition Metal Ions in Crystals (New York:

Academic)
[14] Griffith J S 1964 The Theory of Transition-Metal Ions (Cambridge: Cambridge University Press)
[15] Hauser A 1991 J. Chem. Phys. 94 2741
[16] Tanabe Y and Sugano S 1954 J. Phys. Soc. Japan 9 753
[17] Jung J, Spiering H, Yu Z and Gütlich P 1995 Hyperfine Interact. 95 107
[18] Jung J 1995 PhD Thesis Mainz
[19] Boldyrev S I, Dumbraveanu R V and Perlin Yu E 1981 Sov. Solid State Phys. 23 787


